Expressions algébriques Démontrer l'égalité de deux expressions

Le but de ce TP est d'apprendre à démontrer que deux expressions dépendant de x sont égales.

Soit
$$f(x) = (x - 2)(x + 5)$$
 et $g(x) = 2x^2 + 2x - 10$, où x est un réel.

Montrer que f(0) = g(0) et que f(1) = g(1). Peut-on en conclure que f(x) = g(x) quelques soit x réel ?

Calculer f(-1) et g(-1). Conclure.

1. Partir d'une expression et arriver à une autre

Montrer que, pour tout *x* réel, $2x^2 + 7x - 15 = (2x - 3)(x + 5)$

Montrer que pour tout $x \in]2; +\infty[\frac{5x-1}{x-2} = 5 + \frac{9}{x-2}]$

2. Montrer que la différence de deux expressions est nulle

Montrer que, pour tout $x \in]2; +\infty[\frac{x^2+x-6}{x^2-x-2} = \frac{x+3}{x+1}]$

On calcule la différence des deux termes en prenant comme dénominateur commun

$$(x^2 - x - 2)(x + 1)$$

3. Montrer que deux expressions sont égales à une troisième

Montrer que, pour tout réel x, $(x - 3)(x + 2) - x^2 + x(x - 4) = (x - 6)(x + 1)$

On peut ici développer chaque membre de l'égalité et vérifier qu'ils conduisent au même résultat.

4. Si les expressions sont de même signe, montrer que les carrés sont égaux

Montrer que, pour tout réel x positif : $\sqrt{1 + x + 2\sqrt{x}} = 1 + \sqrt{x}$.

Les deux membres de l'égalité sont positifs et leur expression au carré est plus simple. On va donc comparer les carrés et vérifier s'ils sont égaux.

5. Exercices d'application

Montrer que les égalités suivantes sont vérifiées pour tout réel x de l'intervalle donné, en choisissant la méthode la plus adaptée.

- Pour tout réel $x : x^2 12x + 35 = (x 5)(x 7)$
- Pour $x \in]-1; +\infty[: 2 + \frac{x^2-2}{x+1} = x + 1 \frac{1}{x+1}]$
- Pour $x \in]2; +\infty[:3x+1-\frac{1}{x-2}=\frac{3x^2-5x-3}{x-2}]$
- Pour $x \in]2; +\infty[: \sqrt{x^2 + 3} x = \frac{3}{\sqrt{x^2 + 3} + x}]$