DST 3 - Corrigé

Exercice 1 (4 points)

Avant le début des travaux de construction d'une autoroute, une équipe d'archéologie préventive procède à des sondages successifs en des points régulièrement espacés sur le terrain.

Lorsque le *n*-ième sondage donne lieu à la découverte de vestiges, il est dit positif.

L'évènement : « le n-ième sondage est positif » est noté V_n , on note p_n la probabilité de l'évènement V_n .

L'expérience acquise au cours de ce type d'investigation permet de prévoir que :

- si un sondage est positif, le suivant a une probabilité égale à 0,6 d'être aussi positif;
- si un sondage est négatif, le suivant a une probabilité égale à 0,9 d'être aussi négatif.

On suppose que le premier sondage est positif, c'est-à-dire : $p_1 = 1$.

- 1) Calculer les probabilités des évènements suivants :
- a) A: « les 2e et 3e sondages sont positifs »;

Comme on suppose le premier sondage positif $(p_1 = 1)$ on a $p_2 = p(V_2) = 0.6$ et d'après l'énoncé $p_{V_2}(V_3) = 0.6$. D'où :

$$p(A) = p(V_2 \cap V_3) = p(V_2) \times p_{V_2}(V_3) = 0.6 \times 0.6 = 0.36$$

b) B: « les 2e et 3e sondages sont négatifs ».

$$p(V_2)=0.6 \Rightarrow p(\overline{V_2})=1-p(\overline{V_2})=0.4$$
 et d'après l'énoncé $p_{\overline{V_2}}(\overline{V_3})=0.9$; D'où : $p(B)=p(\overline{V_2}\cap \overline{V_3})=p(\overline{V_2})\times p_{\overline{V_2}}(\overline{V_3})=0.4\times 0.9=0.36$

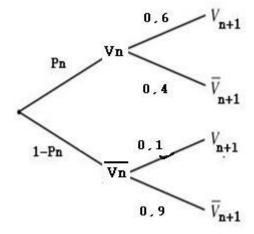
2) Calculer la probabilité p_3 pour que le 3e sondage soit positif.

$$p_{\overline{V_2}}(\overline{V_3}) = 0.9 \Rightarrow p_{\overline{V_2}}(V_3) = 1 - p_{\overline{V_2}}(\overline{V_3}) = 0.1$$

$$p_3 = p(V_3) = p(V_3 \cap V_2) + p(V_3 \cap \overline{V_2}) = p(V_2) \times p_{V_2}(V_3) + p(\overline{V_2}) \times p_{\overline{V_2}}(V_3) = 0.36 + 0.4 \times 0.1 = 0.4$$

3) *n* désigne un entier naturel supérieur ou égal à 2.

Recopier et compléter l'arbre ci-dessous en fonction des données de l'énoncé :



4) Pour tout entier naturel n non nul, établir que : $p_{n+1} = 0.5p_n + 0.1$.

D'après la formule des probabilités totales, on a pour tout entier naturel n non nul :

$$p_{n+1} = p(V_{n+1}) = p(V_{n+1} \cap V_n) + p(V_{n+1} \cap \overline{V_n}) = p(V_n) \times p_{V_n}(V_{n+1}) + p(\overline{V_n}) \times p_{\overline{V_n}}(V_{n+1})$$

D'où $p_{n+1} = 0.6p_n + 0.1(1 - p_n) = 0.5p_n + 0.1$

- **5)** On note u la suite définie, pour tout entier naturel n non nul par : $u_n = p_n 0.2$.
- a) Démontrer que u est une suite géométrique, en préciser le premier terme et la raison.

$$u_{n+1} = p_{n+1} - 0.2 = 0.5p_n + 0.1 - 0.2 = 0.5p_n - 0.1 = 0.5(p_n - 0.2) = 0.5u_n$$

Donc (u_n) est la suite géométrique de raison q=0.5 et de premier terme $u_1=p_1-0.2=0.8$

b) Exprimer p_n en fonction de n.

De la question précédente on déduit que $u_n = u_1 \times q^{n-1} = 0.8 \times (0.5)^{n-1}$.

$$u_n = p_n - 0.2 \Leftrightarrow p_n = u_n + 0.2$$

Donc
$$p_n = 0.8 \times (0.5)^{n-1} + 0.2$$

c) Calculer la limite, quand n tend vers $+\infty$, de la probabilité p_n .

 (u_n) est la suite géométrique de raison q=0.5 de premier terme $u_1=0.8$ donc

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} 0.8 \times (0.5)^{n-1} = 0$$

On en déduit que $\lim_{n\to +\infty}p_n=$ 0,2

Exercice 2 - QCM (5 points)

Pour chacune des affirmations (entre guillemets) ci-dessous, préciser si elle est vraie ou fausse.

Le candidat indiquera sur sa copie le numéro de la question et la mention « vrai » ou « faux ». Il justifiera sa réponse (un contre exemple pourra être donné lorsque l'affirmation est fausse).

Une réponse correcte rapporte 1 point, une réponse incorrecte enlève 0,5 point, l'absence de réponse ne rapporte ni n'enlève de points. Un éventuel total négatif sera ramené à zéro.

1) f est une fonction définie sur l'intervalle $[0; +\infty[$.

« Si
$$\lim_{x\to 0} f(x) = 0$$
, alors $\lim_{x\to 0} \frac{1}{f(x)} = +\infty$ ».

FAUX – Contre-exemple : f est définie sur $[0; +\infty[$ par $f(x) = -x^2$.

$$\lim_{x \to 0} (-x^2) = 0 \quad et \lim_{x \to 0} \left(-\frac{1}{x^2} \right) = -\infty$$

2) « Si a est un nombre réel quelconque et f une fonction définie et strictement décroissante sur $[a; +\infty[$, alors $\lim_{x\to +\infty} f(x) = -\infty$ ».

FAUX – Contre-exemple : Sur l'intervalle [1; $+\infty$ [, la fonction f définie par $f(x) = \frac{1}{x}$ est strictement décroissante

$$\lim_{x \to +\infty} \frac{1}{x} = 0.$$

3) « Si f est une fonction définie sur $[0; +\infty[$ telle que $0 \le f(x) \le \sqrt{x}$ sur $[0; +\infty[$ alors

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 0 \text{ w.}$$

$$VRAI - 0 \le f(x) \le \sqrt{x} \Leftrightarrow 0 \le \frac{f(x)}{x} \le \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}$$

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0 \quad \text{donc d'après le théorème des gendarmes} \quad \lim_{x \to +\infty} \frac{f(x)}{x} = 0$$

4) « La fonction f définie sur $[0; +\infty[par f(x) = x\sqrt{x} \text{ est continue et dérivable en 0}) ».$

$$VRAI - \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{x\sqrt{x}}{x} = \lim_{x \to 0} \sqrt{x} = 0$$

Le taux d'accroissement entre x et 0 de f admet une limite finie quand x tend vers 0. Cette limite est égale au nombre dérivé f'(0). Donc f est dérivable en 0 et donc aussi continue en 0.

5) Si f est définie sur l'intervalle [a; b] avec f(b) = -1 et f(a) = 2 alors l'équation f(x) = 0 admet au moins une solution dans [a; b].

FAUX - Si la fonction n'est pas continue entre a et b, l'équation f(x) = 0 peut ne pas avoir de solution. Contre –exemple : f est définie sur [a;b] par f(x) = 2 si $x \in [a;b[$ et f(b) = -1.

Exercice 3 (4 points)

- **1)** Dans le plan complexe (P) rapporté au repère orthonormal direct ($O; \vec{u}, \vec{v}$), on considère les quatre points A, B, C et D d'affixes respectives 3, 4i, -2 + 3i et 1 i.
- a) Placer les points A, B, C et D dans le plan.

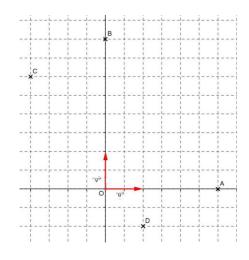
Voir ci-contre.

b) Quelle est la nature du quadrilatère *ABCD* ? Justifier votre réponse.

Le vecteur \overrightarrow{AB} a pour affixe $z_B - z_A = 4i - 3 = -3 + 4i$.

Le vecteur \overrightarrow{DC} a pour affixe $z_c - z_D = -2 + 3i - (1 - i) = -3 + 4i$.

$$z_B - z_A = z_C - z_D \Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow ABCD$$
 est un parallélogramme.



2) On considère dans l'ensemble des complexes les équations :

$$z^2 - (1+3i)z - 6 + 9i = 0$$
 (1) et $z^2 - (1+3i)z + 4 + 4i = 0$ (2)

a) Montrer que l'équation (1) admet une solution réelle z_1 , et l'équation (2) une solution imaginaire pure z_2 . Soit $a \in \mathbb{R}$.

$$a^2 - (1+3i)a - 6 + 9i = a^2 - a - 3ai - 6 + 9i = a^2 - a - 6 + i(9-3ai)$$
;
 $a \text{ est solution de } (1) \Leftrightarrow a^2 - a - 6 + i(9-3a) = 0 \Leftrightarrow a^2 - a - 6 = 0 \text{ et } 9 - 3a = 0 \Leftrightarrow a = -2 \text{ ou } a = 3 \text{ et } a = 3$

L'équation (1) admet donc une solution réelle $z_1 = 3$

Soit $b \in \mathbb{R}$.

$$(bi)^2 - (1+3i)(bi) + 4 + 4i = b^2i^2 - bi - 3bi^2 + 4 + 4i = -b^2 + 3b + 4 + i(4-b)$$

bi est solution de (2) \Leftrightarrow $-b^2 + 3b + 4 + i(4 - b) = 0 \Leftrightarrow -b^2 + 3b + 4 = 0$ et $4 - b = 0 \Leftrightarrow b = -1$ ou b = 4 et b = 4

L'équation (2) admet donc une solution imaginaire pure $z_2 = 4i$.

b) Développer
$$(z - 3)(z + 2 - 3i)$$
, puis $(z - 4i)(z - 1 + i)$.

$$(z-3)(z+2-3i) = z^2 - 3z + 2z - 6 - 3iz + 9i = z^2 - (1+3i)z - 6 + 9i.$$

$$(z - 4i)(z - 1 + i) = z^2 - 4iz - z + 4i + iz - 4i^2 = z^2 - (1 + 3i)z + 4 + 4i$$

c) En déduire les solutions de l'équation :
$$(z^2 - (1+3i)z - 6 + 9i)(z^2 - (1+3i)z + 4 + 4i) = 0$$

$$(z^2 - (1+3i)z - 6 + 9i)(z^2 - (1+3i)z + 4 + 4i) = 0 \Leftrightarrow z^2 - (1+3i)z - 6 + 9i = 0 \ ou \ z^2 - (1+3i)z + 4 + 4i = 0$$

$$\Leftrightarrow (z-3)(z+2-3i) = 0 \ ou \ (z-4i)(z-1+i) = 0$$

$$\Leftrightarrow z = 3 \text{ ou } z = -2 + 3i \text{ ou } z = 4i \text{ ou } z = 1 - i$$

3) On appelle f l'application qui au point M, d'affixe z, associe le point M', d'affixe

$$z'$$
 telle que : $z' = z^2 - (1+3i)z - 6 + 9i$.

On pose
$$z = x + iy$$
 et $z' = x' + iy'$. Exprimer x' et y' en fonction de x et y .

$$z' = z^2 - (1+3i)z - 6 + 9i \Leftrightarrow x' + iy' = (x+iy)^2 - (1+3i)(x+iy) - 6 + 9i$$

$$\Leftrightarrow x^2 + 2ixy + y^2i^2 - x - 3ix - iy - 3yi^2 - 6 + 9i$$

$$\Leftrightarrow x^2 - y^2 - x + 3y - 6 + i(-3x - y + 2xy + 9)$$

$$\iff \begin{cases} x' = x^2 - y^2 - x + 3y - 6 \\ y' = -3x - y + 2xy + 9 \end{cases}$$

Exercice 4 (7 points)

Partie A

Soit *g* la fonction définie sur \mathbb{R} par $g(x) = x^3 - 3x - 3$

1) Déterminer les limites de *g* aux bornes de son ensemble de définition.

$$g(x) = x^3 - 3x - 3 = x^3 (1 - \frac{3}{x^2} - \frac{3}{x^3})$$

<u>Limite en −∞</u>

$$\lim_{x \to -\infty} \frac{-3}{x^2} = \lim_{x \to -\infty} \frac{-3}{x^3} = 0 \quad \text{donc par somme de limites } \lim_{x \to -\infty} \left(1 - \frac{3}{x^2} - \frac{3}{x^3}\right) = 1$$

 $\lim_{x \to -\infty} x^3 = -\infty$ donc par produit de limites $\lim_{x \to -\infty} g(x) = -\infty$

<u>Limite en +∞</u>

$$\lim_{x \to +\infty} \frac{-3}{x^2} = \lim_{x \to +\infty} \frac{-3}{x^3} = 0 \quad \text{donc par somme de limites } \lim_{x \to +\infty} \left(1 - \frac{3}{x^2} - \frac{3}{x^3}\right) = 1$$

De plus $\lim_{x \to +\infty} x^3 = +\infty$ donc par produit de limites $\lim_{x \to +\infty} g(x) = +\infty$

2) Étudier les variations de *g*.

$$g'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1)$$

g'(x) est un polynôme de degré 2 ayant deux racines -1 et +1. Son coefficient a=3>0 d'où le tableau de signes de g'(x) suivant :

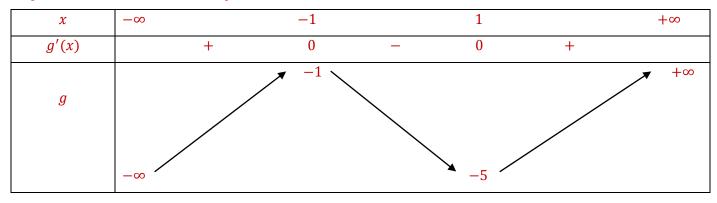
g'(x)	+	0	_	0	+	

On en déduit les variations de g :

Si $x \in]-\infty; -1[$ ou $x \in]1; +\infty[$, g'(x) > 0 donc g est strictement croissante.

Si $x \in]-1; 1[, g'(x) < 0 \text{ donc } g \text{ est strictement décroissante.}]$

On peut résumer les données des questions 1 et 2 dans le tableau de variations suivant :



$$g(-1) = (-1)^3 - 3(-1) - 3 = -1$$
 et $g(1) = (1)^3 - 3 \times 1 - 3 = -5$

3) Démontrer que l'équation g(x) = 0 admet une unique solution α dans \mathbb{R} .

Sur l'intervalle $]-\infty;1]$, g(x) admet un maximum égal à -1. On a donc $g(x) \le -1 < 0$.

L'équation g(x) = 0 n'a donc pas de solution dans l'intervalle $]-\infty; 1]$.

Sur l'intervalle [1; $+\infty$ [, la fonction g est **continue** (car dérivable), **strictement** croissante, g(1) = -5 et $\lim_{x \to +\infty} g(x) = +\infty$.

 $0 \in [-5; +\infty[$ donc l'équation g(x) = 0 admet une solution unique α dans $[1; +\infty[$.

Ainsi, sur $]-\infty$; $+\infty[$, l'équation g(x)=0 admet une solution unique α dans l'intervalle $[1; +\infty[$.

Donner un encadrement à 10^{-2} près de α .

$$g(2,10) < 0$$
 et $g(2,11) > 0$ donc $2,1 < \alpha < 2,11$.

4) En déduire le signe de g(x) suivant les valeurs de x sur \mathbb{R} .

Sur l'Intervalle $]-\infty;1], g(x) \le -1 < 0$

Sur l'intervalle [1; $+\infty$ [, la fonction g est strictement croissante et $g(\alpha) = 0$ donc si $x \in [1; \alpha[, g(x) < 0]$ et si $x \in [\alpha; +\infty[, g(x) > 0]$. D'où le tableau de signes suivant:

х	-∞	α		+∞
g(x)	_	0	+	

Partie B

Soit f la fonction définie sur $\mathbb{R} \setminus \{-1, 1\}$ par $f(x) = \frac{2x^3 + 3}{x^2 - 1}$

On note C_f la courbe représentative de f dans le plan muni d'un repère orthogonal.

Unité graphique : 2 cm pour 1 en abscisses, 1 cm pour 2 en ordonnées.

1) Déterminer les limites de *f* aux bornes de son ensemble de définition.

<u>Limite en +∞</u>

$$f(x) = \frac{2x^3 + 3}{x^2 - 1} = \frac{x^3(2 + \frac{3}{x^3})}{x^2(1 - \frac{1}{x^2})} = x \times \frac{2 + \frac{3}{x^3}}{1 - \frac{1}{x^2}}$$

$$\lim_{x \to +\infty} \frac{3}{x^3} = \lim_{x \to +\infty} -\frac{1}{x^2} = 0 \quad \text{donc} \quad \lim_{x \to +\infty} \left(2 + \frac{3}{x^3}\right) = 2 \quad \text{et} \quad \lim_{x \to +\infty} \left(1 - \frac{1}{x^2}\right) = 1$$

Donc par produit et quotient de limites, $\lim_{x \to +\infty} f(x) = +\infty$

<u>Limite en −∞</u>

$$\lim_{x \to -\infty} \frac{3}{x^3} = \lim_{x \to -\infty} -\frac{1}{x^2} = 0 \quad \text{donc} \quad \lim_{x \to -\infty} \left(2 + \frac{3}{x^3}\right) = 2 \quad \text{et} \quad \lim_{x \to -\infty} \left(1 - \frac{1}{x^2}\right) = 1$$

De plus $\lim_{x\to +\infty} (-x) = -\infty$. Donc par produit et quotient de limites, $\lim_{x\to -\infty} f(x) = -\infty$

<u>Limite en −1</u>

$$\lim_{x \to -1} (2x^3 + 3) = 1$$

$$\lim_{x \to -1} (x^2 - 1) = 0$$

x	-∞		-1		1		+∞
$x^2 - 1$		+	0	_	0	+	

On en déduit que $\lim_{\substack{x \to -1 \\ <}} f(x) = +\infty$ et $\lim_{\substack{x \to -1 \\ >}} f(x) = -\infty$

Limite en +1

$$\lim_{x \to -1} (2x^3 + 3) = 5$$

$$\lim_{x \to 1} (x^2 - 1) = 0$$

x	-∞		-1		1		+∞
$x^2 - 1$		+	0	_	0	+	

On en déduit que $\lim_{\substack{x \to 1 \\ <}} f(x) = -\infty$ et $\lim_{\substack{x \to 1 \\ >}} f(x) = +\infty$

En déduire les asymptotes à la courbe C_f .

 $\lim_{\substack{x \to -1 \\ <}} f(x) = +\infty \text{ et } \lim_{\substack{x \to -1 \\ >}} f(x) = -\infty \text{ donc la droite d'équation } x = -1 \text{ est asymptote verticale à la courbe } C_f$

 $\lim_{\substack{x\to 1\\ <}} f(x) = -\infty \text{ et } \lim_{\substack{x\to 1\\ >}} f(x) = +\infty \text{ donc la droite d'équation } x = 1 \text{ est asymptote verticale à la courbe } C_f$

2) Déterminer la dérivée f' de la fonction f et étudier son signe.

$$f'(x) = \frac{6x^2(x^2 - 1) - 2x(2x^3 + 3)}{(x^2 - 1)^2} = \frac{6x^4 - 6x^2 - 4x^4 - 6x}{(x^2 - 1)^2} = \frac{2x^4 - 6x^2 - 6x}{(x^2 - 1)^2} = \frac{2x(x^3 - 3x - 3)}{(x^2 - 1)^2}$$

Soit
$$f'(x) = \frac{2xg(x)}{(x^2 - 1)^2}$$

Quelque soit $x \in \mathbb{R} \setminus \{-1; 1\}$, $(x^2 - 1)^2 > 0$ donc f'(x) a même signe que 2xg(x). D'où le tableau de signes de f'(x) suivant :

x	-∞ -	-1	0		1	α		+∞
2 <i>x</i>	_	_	0	+	+		+	
g(x)	_	_		_	_	0	+	
f'(x)	+	+	0	_	_	0	+	

3) Dresser le tableau de variations de *f*.

X	-∞ -	0	1	-	α	+∞
f'(x)	+	+ 0	-	_	0	+
f	-∞ +∞		-∞	+∞	$f(\alpha)$	++8

4) Soit *D* la droite d'équation y = 2x.

a) Étudier le signe de f(x) - 2x suivant les valeurs de x.

$$f(x) - 2x = \frac{2x^3 + 3}{x^2 - 1} - 2x = \frac{2x^3 + 3 - 2x(x^2 - 1)}{x^2 - 1} = \frac{2x + 3}{x^2 - 1}$$

x	-∞		$-\frac{3}{2}$		-1		1		+∞
2x + 3		_	0	+		+		+	
$x^2 - 1$		+		+	0	_	0	+	
f(x)-2x		_	0	+		_		+	

b) En déduire la position de C_f par rapport à D.

Si
$$x \in \left] -\infty; -\frac{3}{2} \right[\cup \left] -1; 1[, f(x) - 2x < 0 \text{ donc } C_f \text{ en dessous de } D. \right]$$

Si
$$x \in \left[-\frac{3}{2}; -1\right] \cup \left[1; +\infty\right[, f(x) - 2x > 0 \text{ donc } C_f \text{ au dessus de } D.\right]$$

Si
$$x = -\frac{3}{2}$$
, $f(x) - 2x = 0$, donc la courbe C_f et la droite D se croisent en $A(-\frac{3}{2}; -3)$.

5) Calculer la limite de f(x) - 2x en $+\infty$ et en $-\infty$.

$$f(x) - 2x = \frac{2x+3}{x^2-1} = \frac{1}{x} \times \frac{2+\frac{3}{x}}{1-\frac{1}{x^2}}$$

$$\lim_{x \to -\infty} \frac{1}{x} = 0 = \lim_{x \to -\infty} \frac{1}{x^2} \text{ d'où } \lim_{x \to -\infty} 2 + \frac{3}{x} = 2 \text{ et } \lim_{x \to -\infty} 1 - \frac{1}{x^2} = 1$$

Donc par produit et quotient de limites $\lim_{x \to -\infty} (f(x) - 2x) = 0$

De même
$$\lim_{x \to +\infty} (f(x) - 2x) = 0$$

Donner une interprétation de ce résultat.

Le droite D d'équation y=2x est asymptote à la courbe C_f au voisinage de $-\infty$ et $+\infty$

6) Construire la courbe \mathcal{C}_f et la droite D dans le même repère fourni en annexe.

х	-5	-4	-3	-2	-1,5	-1,2	-0,8	0	0,5	0,8	1,2	2,1	3	5
f(x)	-10,29	-8,3	-6,375	-4,3	-3	-1,036	-5,488	-3	-4,3	-11,17	14,672	6,3114	7,125	10,541

